Rings on Vector Abelian Groups
نویسندگان
چکیده
A multiplication on an Abelian group G is a homomorphism μ: ⊗ → G. An with it called ring the R. A. Beaumont and D. Lawver have formulated problem of studying semisimple groups. said to be if there exists associative it. Semisimple groups are described in class vector nonmeasurable It also shown that set I nonmeasurable, $$ G=\coprod_{i\in I}{A}_i reduced group, μ G, then determined by its restriction sum {\displaystyle \begin{array}{c}\oplus \\ {}i\in I\end{array}}{A}_i this statement incorrect measurable or not reduced.
منابع مشابه
Extending Abelian Groups to Rings
For any abelian group G and any function f : G → G we define a commutative binary operation or “multiplication” on G in terms of f . We give necessary and sufficient conditions on f for G to extend to a commutative ring with the new multiplication. In the case where G is an elementary abelian p-group of odd order, we classify those functions which extend G to a ring and show, under an equivalen...
متن کاملGrothendieck Groups of Abelian Group Rings
Let R be a noetherian ring, and G(R) the Grothendieck group of finitely generated modules over R. For a finite abelian group n, we describe G(Rn) as the direct sum of groups G(R’). Each R’ is the form RI<,,, I/n], where n is a positive integer and Cn a primitive nth root of unity. As an application, we describe the structure of the Grothendieck group of pairs (H. u), where His an abelian group ...
متن کاملQuantum Error-Correction Codes on Abelian Groups
We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.
متن کاملCoverings of Abelian groups and vector spaces
We study the question how many subgroups, cosets or subspaces are needed to cover a finite Abelian group or a vector space if we have some natural restrictions on the structure of the covering system. For example we determine, how many cosets we need, if we want to cover all but one element of an Abelian group. This result is a group theoretical extension of the theorem of Brouwer, Jamison and ...
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Sciences
سال: 2021
ISSN: ['1072-3374', '1573-8795']
DOI: https://doi.org/10.1007/s10958-021-05646-2